1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
CVE: CVE-2004-0747 CWE: CWE-119 ipc: note: answer: question: | Did the feature that this vulnerability affected use inter-process communication? IPC includes OS signals, pipes, stdin/stdout, message passing, and clipboard. Writing to files that another program in this software system reads is another form of IPC. Answer should be boolean. Explain your answer bugs: - 11182 i18n: note: answer: instructions: | Was the feature impacted by this vulnerability about internationalization (i18n)? An internationalization feature is one that enables people from all over the world to use the system. This includes translations, locales, typography, unicode, or various other features. Answer should be boolean. Write a note about how you came to the conclusions you did. repo: vccs: - note: | Original commit of the ap_resolve_env function that claims that the change for handling environment variable constructs is pretty useless and is an instance of feature creep. Developer (dirkx) does not seem to keen on the change. commit: 99a9d6e3e02dcd0d996097e8c4d23a39c5dbbf44 - note: commit: fixes: - note: "Github contributor \"notroj\" had to rewrite the ap_resolve_env function to avoid buffer overflow. The rewritten function\nuses a SMALL_EXPANSION (set to 5) variable which the function checks to make sure expansion does not occur \nbeyond this to avoid obverlow. It also casts the ap_resolve_env function to (char *).\n" commit: f2d3d37f2dd9e1c31efff9e08c6508f1c6198318 bounty: amt: url: announced: lessons: yagni: note: applies: question: | Are there any common lessons we have learned from class that apply to this vulnerability? In other words, could this vulnerability serve as an example of one of those lessons? Leave "applies" blank or put false if you did not see that lesson (you do not need to put a reason). Put "true" if you feel the lesson applies and put a quick explanation of how it applies. Don't feel the need to claim that ALL of these apply, but it's pretty likely that one or two of them apply. If you think of another lesson we covered in class that applies here, feel free to give it a small name and add one in the same format as these. serial_killer: note: applies: complex_inputs: note: applies: distrust_input: note: "User supplied strings through config files were not being validated by length. This caused the overflow \nand subsequent gain of privleges.\n" applies: true least_privilege: note: applies: native_wrappers: note: applies: defense_in_depth: note: applies: secure_by_default: note: applies: environment_variables: note: Environment variable expansion is what caused the buffer overflows. applies: true security_by_obscurity: note: applies: frameworks_are_optional: note: applies: reviews: [] upvotes: 3 CWE_note: mistakes: answer: "The mistakes that were made were primarily coding mistakes as the code written worked as intended but failed\nto check for boundary cases in which overflows could occur. Lots of changes were made between the VCC and the fix,\nand even a patch to the fix was made. It appears there are a lot of factors not considered initially and during the\nlifetime of the vulnerability, as different developers had to keep coming back to the logic. This seems like simple\nmiscommunication. They didn't cover all their tracks.\n\nLooking over their solution, it appears that they opted for the implementation mitigation of CWE-119, \nas they rewrote all the logic for the function in question, adding length checks, casting, etc. to check for\nextraneous inputs and to avoid harmful overflows. This fix needed one patch, and that was to handle a different \nuse case of the function separate from the issue (miscommunication once again). Since then the function was moved \nto a different file but not modified. For these reasons, it appears the solution was ultimately proper.\n" question: | In your opinion, after all of this research, what mistakes were made that led to this vulnerability? Coding mistakes? Design mistakes? Maintainability? Requirements? Miscommunications? Look at the CWE entry for this vulnerability and examine the mitigations they have written there. Are they doing those? Does the fix look proper? Use those questions to inspire your answer. Don't feel obligated to answer every one. Write a thoughtful entry here that those ing the software engineering industry would find interesting. nickname: reported: announced: '2004-10-20' published: subsystem: name: server answer: Server environment configuration question: | What subsystems was the mistake in? Look at the path of the source code files code that were fixed to get directory names. Look at comments in the code. Look at the bug reports how the bug report was tagged. discovered: date: '2004-09-15' answer: Discovered by Ulf Harnhammar. google: false contest: false question: | How was this vulnerability discovered? Go to the bug report and read the conversation to find out how this was originally found. Answer in longform below in "answer", fill in the date in YYYY-MM-DD, and then determine if the vulnerability was found by a Google employee (you can tell from their email address). If it's clear that the vulenrability was discovered by a contest, fill in the name there. The "automated" flag can be true, false, or nil. The "google" flag can be true, false, or nil. If there is no evidence as to how this vulnerability was found, then you may leave this part blank. automated: false description: "The application fails to validate length for user-inputed strings through the form of\n.httaccess and or httpd.conf config files which can, when malicious, cause a buffer overflow \nwhen this string is parsed, expanded, and copied into a finite buffer. This\ncan affect an environment variable and gives the user elevated privledges locally.\n" unit_tested: fix: false code: false answer: Code was not unit tested, and was not after. question: | Were automated unit tests involved in this vulnerability? Was the original code unit tested, or not unit tested? Did the fix involve improving the automated tests? For the "code" answer below, look not only at the fix but the surrounding code near the fix and determine if and was there were unit tests involved for this module. For the "fix" answer below, check if the fix for the vulnerability involves adding or improving an automated test to ensure this doesn't happen again. specification: answer: answer_note: instructions: | Is there mention of a violation of a specification? For example, an RFC specification, a protocol specification, or a requirements specification. Be sure to check all artifacts for this: bug report, security advisory, commit message, etc. The answer field should be boolean. In answer_note, please explain why you come to that conclusion. curation_level: 1 CWE_instructions: | Please go to cwe.mitre.org and find the most specific, appropriate CWE entry that describes your vulnerability. (Tip: this may not be a good one to start with - spend time understanding this vulnerability before making your choice!) autodiscoverable: answer: answer_note: instructions: | Is it plausible that a fully automated tool could have discovered this? These are tools that require little knowledge of the domain, e.g. automatic static analysis, compiler warnings, fuzzers. Examples for true answers: SQL injection, XSS, buffer overflow Examples for false: RFC violations, permissions issues, anything that requires the tool to be "aware" of the project's domain-specific requirements. The answer field should be boolean. In answer_note, please explain why you come to that conclusion. yaml_instructions: bounty_instructions: | If you came across any indications that a bounty was paid out for this vulnerability, fill it out here. Or correct it if the information already here was wrong. Otherwise, leave it blank. interesting_commits: commits: - note: "This commit moved the ap_resolve_env function from server/util.c to server/core.c in preparation\nof a new feature. Does not appear to be for security reasons, as the code written for the fix in 2004 was\nunmodified. As it was used as part of a new feature and wasn't modified, this solidifies the probability that \nthe fix was a good one.\n" commit: 58f17628acc2446d1811095b38fdcbb1357d6d55 - note: Message is - Style police were called back from their vacation. This team is witty. commit: 7310a8c6b5a6013667a780b6d849f184e06627e8 - note: Fix of original code to ensure only environment variable is passed to the getenv function. commit: 721890ad66b8c44a1a0fa910293f0b9a769897d2 - note: Lots of minor syntax and function parameter changes. Claims to fix command initialisation. commit: c0a4cb787356028a11170db449f9a7d2f8237885 - note: | patch of the fix commit that corrects some regression introduced in the case that the function is called an environment variable (getenv doesn't return anything). commit: 1b036562191b5f27453bdb15da66aba036c77b44 question: | Are there any interesting commits between your VCC(s) and fix(es)? Write a brief (under 100 words) description of why you think this commit was interesting in light of the lessons learned from this vulnerability. Any emerging themes? curated_instructions: | If you are manually editing this file, then you are "curating" it. Set the entry below to "true" as soon as you start. This will enable additional integrity checks on this file to make sure you fill everything out properly. If you are a student, we cannot accept your work as finished unless curated is set to true. upvotes_instructions: | For the first round, ignore this upvotes number. For the second round of reviewing, you will be giving a certain amount of upvotes to each vulnerability you see. Your peers will tell you how interesting they think this vulnerability is, and you'll add that to the upvotes score on your branch. nickname_instructions: | A catchy name for this vulnerability that would draw attention it. If the report mentions a nickname, use that. Must be under 30 characters. Optional. reported_instructions: announced_instructions: | Was there a date that this vulnerability was announced to the world? You can find this in changelogs, blogs, bug reports, or perhaps the CVE date. A good source for this is Chrome's Stable Release Channel (https://chromereleases.googleblog.com/). Please enter your date in YYYY-MM-DD format. fixes_vcc_instructions: | Please put the commit hash in "commit" below (see my example in CVE-2011-3092.yml). Fixes and VCCs follow the same format. published_instructions: description_instructions: | You can get an initial description from the CVE entry on cve.mitre.org. These descriptions are a fine start, but they can be kind of jargony. Rewrite this description in your own words. Make it interesting and easy to read to anyone with some programming experience. We can always pull up the NVD description later to get more technical. Try to still be specific in your description, but remove Chromium-specific stuff. Remove references to versions, specific filenames, and other jargon that outsiders to Chromium would not understand. Technology like "regular expressions" is fine, and security phrases like "invalid write" are fine to keep too. |
See a mistake? Is something missing from our story? We welcome contributions! All of our work is open-source and version-controlled on GitHub. You can curate using our Curation Wizard.
Hover over an event to see its title.
Click on the event to learn more.
Filter by event type with the buttons below.
