1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
CVE: CVE-2008-6998 CWE: - 121 - 119 bugs: - 1362175 repo: vccs: - note: 'Add Chrome to the repository ' commit: '09911bf300f1a419907a9412154760efd0b7abc3' fixes: - note: "The developers added a check for the URL preview functionality to make sure it doesnt try\nand display a large URL. If the URL is longer than 128 chars then it would only\nshow up to 128 chars. \n" commit: 29d1eb815f296355e63a555729abc17b896d220a bounty: date: amount: references: [] lessons: yagni: note: applies: question: | Are there any common lessons we have learned from class that apply to this vulnerability? In other words, could this vulnerability serve as an example of one of those lessons? Leave "applies" blank or put false if you did not see that lesson (you do not need to put a reason). Put "true" if you feel the lesson applies and put a quick explanation of how it applies. Don't feel the need to claim that ALL of these apply, but it's pretty likely that one or two of them apply. If you think of another lesson we covered in class that applies here, feel free to give it a small name and add one in the same format as these. serial_killer: note: applies: complex_inputs: note: | The URL was not expected, and some users could use the fact and execute arbitrary code with the vulnerability. applies: true distrust_input: note: "As a programmer they should always becareful with user inputs and never trust a user \nto use the system correctly. In this case the url previewer broke and cause a system \nshutdown which allowed the user to run arbitrary code. By checking the input for \nmalformed text and length, the devleopers will be able to solve and prevent this problem.\n" applies: true least_privilege: note: applies: native_wrappers: note: applies: defense_in_depth: note: applies: secure_by_default: note: applies: environment_variables: note: applies: security_by_obscurity: note: applies: frameworks_are_optional: note: applies: reviews: - 259 - 474 upvotes: 5 mistakes: answer: "This was both a design and coding mistake. I think this was a design mistake because they \nhad other overflow problems that followed with the commit of the url overflow problem. So \nthey were missing a crucial check of array size in their code. Which means they were overlooking \nthe problem entirely. This could also fall into the category of coding mistakes because nit pick\nerrors don't really belong in the design phase.\n\nSome extra fixes they should add are making sure the user inputs are always checked with white \nand black lists. This will solve problems before they even come up. Solving the problem as they \nshow up when the system is released is much harder to spot all the errors. Implement the checks \nand input validations as they were programming. \n" question: | In your opinion, after all of this research, what mistakes were made that led to this vulnerability? Coding mistakes? Design mistakes? Maintainability? Requirements? Miscommunications? Look at the CWE entry for this vulnerability and examine the mitigations they have written there. Are they doing those? Does the fix look proper? Use those questions to inspire your answer. Don't feel obligated to answer every one. Write a thoughtful entry here that those ing the software engineering industry would find interesting. announced: '2009-08-19 01:24:52.797000000 -04:00' subsystem: name: url_elider answer: c++ compiler, the code is under url_elider. question: | What subsystems was the mistake in? Look at the path of the source code files code that were fixed to get directory names. Look at comments in the code. Look at the bug reports how the bug report was tagged. Examples: "clipboard", "gpu", "ssl", "speech", "renderer" discovered: date: answer: "Nothing was posted about how the developers found the problem. But it was probably from \nan outside source. I went onto the CVE and looked though all the BID and exploit urls. \nThey they only provided what happened and the type of vulnerability it was. \n" google: contest: question: | How was this vulnerability discovered? Go to the bug report and read the conversation to find out how this was originally found. Answer in longform below in "answer", fill in the date in YYYY-MM-DD, and then determine if the vulnerability was found by a Google employee (you can tell from their email address). If it's clear that the vulenrability was discovered by a contest, fill in the name there. The "automated" flag can be true, false, or nil. The "google" flag can be true, false, or nil. If there is no evidence as to how this vulnerability was found, then you may leave the entries blank except for "answer". Write down where you looked in "answer". automated: description: "Google chrome had a problem when a user typed in more than 128 chars in the url, \nthen hovered over the url. The url preview should show up but the backend array \nthat held the url typed in would overflow and shut the system down. It could also \nlead to users getting a pointer to the current method. Then telling the code to go \nsomewhere the attacker's code is planted and run arbitrary code after the system crashes. \n" unit_tested: fix: true code: false answer: "No, there were no unit tests for this problem. They had this problem since they \ncommited the code. By adding this corner case into automated tests it will prevent \nthis problem from happening again. \n" question: | Were automated unit tests involved in this vulnerability? Was the original code unit tested, or not unit tested? Did the fix involve improving the automated tests? For the "code" answer below, look not only at the fix but the surrounding code near the fix and determine if and was there were unit tests involved for this module. For the "fix" answer below, check if the fix for the vulnerability involves adding or improving an automated test to ensure this doesn't happen again. major_events: answer: "No the problem was there initially, and was never found or fixed up to the point of the commit. \nSome major events I found was that a lot of chromes problems were found by automated testing.\nWhich is weird because this vunerability was not caught by the automated tests. Most of the commits\nwere actually for fixing or adding automated tests.\n" events: - date: name: - date: name: question: | Please record any major events you found in the history of this vulnerability. Was the code rewritten at some point? Was a nearby subsystem changed? Did the team change? The event doesn't need to be directly related to this vulnerability, rather, we want to capture what the development team was dealing with at the time. curation_level: 1 CWE_instructions: | Please go to cwe.mitre.org and find the most specific, appropriate CWE entry that describes your vulnerability. (Tip: this may not be a good one to start with - spend time understanding this vulnerability before making your choice!) bounty_instructions: | If you came across any indications that a bounty was paid out for this vulnerability, fill it out here. Or correct it if the information already here was wrong. Otherwise, leave it blank. interesting_commits: answer: "There were actually a few buffer overflow vunerability problem in that one days worth of \ncommits. It seems like the code itself was missing a lot of checks and was allowing any \nuser inputs and placing them right into their arrays. This is falling into the problem of \nsecurity by obscurity where they thought the system was secure and users would not do \nanything weird or unecessary. These events was from one of the bug report readings on the CVE. \nThe commits that occured on that day included a chrome string update, they disabled tests for \na bug, a bunch of broken builds and roll backs. \n" commits: - note: 'update chrome string ' commit: 42a9ab0deed87ec463c7fd49e7d206380c9ee0cb - note: 'roll back ' commit: 502b410d0b81e7a6610999ad18da590b0d14f1bc question: | Are there any interesting commits between your VCC(s) and fix(es)? Write a brief (under 100 words) description of why you think this commit was interesting in light of the lessons learned from this vulnerability. Any emerging themes? If there are no interesting commits, demonstrate that you completed this section by explaining what happened between the VCCs and the fix. curated_instructions: | If you are manually editing this file, then you are "curating" it. Set the entry below to "true" as soon as you start. This will enable additional integrity checks on this file to make sure you fill everything out properly. If you are a student, we cannot accept your work as finished unless curated is set to true. upvotes_instructions: | For the first round, ignore this upvotes number. For the second round of reviewing, you will be giving a certain amount of upvotes to each vulnerability you see. Your peers will tell you how interesting they think this vulnerability is, and you'll add that to the upvotes score on your branch. announced_instructions: | Was there a date that this vulnerability was announced to the world? You can find this in changelogs, blogs, bug reports, or perhaps the CVE date. A good source for this is Chrome's Stable Release Channel (https://chromereleases.googleblog.com/). Please enter your date in YYYY-MM-DD format. fixes_vcc_instructions: | Please put the commit hash in "commit" below (see my example in CVE-2011-3092.yml). Fixes and VCCs follow the same format. description_instructions: | You can get an initial description from the CVE entry on cve.mitre.org. These descriptions are a fine start, but they can be kind of jargony. Rewrite this description in your own words. Make it interesting and easy to read to anyone with some programming experience. We can always pull up the NVD description later to get more technical. Try to still be specific in your description, but remove Chromium-specific stuff. Remove references to versions, specific filenames, and other jargon that outsiders to Chromium would not understand. Technology like "regular expressions" is fine, and security phrases like "invalid write" are fine to keep too. |
See a mistake? Is something missing from our story? We welcome contributions! All of our work is open-source and version-controlled on GitHub. You can curate using our Curation Wizard.
Hover over an event to see its title.
Click on the event to learn more.
Filter by event type with the buttons below.
