angler-fishThe Vulnerability History Project

CVE-2015-8480

The function that creates a video frame pool, the memory structure for video media frames, does not zero initalize the memory for a video-frame data structure. Large unitialized sections of memory can contain sensitive information and cannot be relied on. Out-of-bounds memory access also allows for a denial of service attack and or read/write access.


The issue here comes down to coding mistakes. They neglected to zero initialize the video frame. When the problem was being addressed there was a lot of ambiguity about interaction with a video library *ffmpeg* being used at the time. The team did not seem to have a clear answer on how the library would interact with their code for awhile. The originator assumed sending the memory without zero-initializing it would be safe - as they speculated that the library could handle it.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
CVE: CVE-2015-8480
CWE:
- 119
bugs:
- 514759
repo: 
vccs:
- note: There was a refactor of the class. Most specific handlers for video frame
    instantiation were removed. Most importantly the new creation of a frame allocated
    memory, but never zero initialized the frame itself.
  commit: 5c799a3909484c32211ccb35a3efd870fce5e7ac
fixes:
- note: The author mentions the fix in this commit will cover the bug but major refactors
    are still needed for the VideoFrame class
  commit: cf69e849d18b9e6889099e713768f56b10491403
- note: ''
  commit: 3ea546df82371eeb7b62f2de25416d4bd21ce745
bounty:
  date: 
  amount: 
  references: []
lessons:
  yagni:
    note: 
    applies: false
  question: |
    Are there any common lessons we have learned from class that apply to this
    vulnerability? In other words, could this vulnerability serve as an example
    of one of those lessons?

    Leave "applies" blank or put false if you did not see that lesson (you do
    not need to put a reason). Put "true" if you feel the lesson applies and put
    a quick explanation of how it applies.

    Don't feel the need to claim that ALL of these apply, but it's pretty likely
    that one or two of them apply.

    If you think of another lesson we covered in class that applies here, feel
    free to give it a small name and add one in the same format as these.
  serial_killer:
    note: 
    applies: false
  complex_inputs:
    note: 
    applies: false
  distrust_input:
    note: The video asking for the memory should not have been trusted.
    applies: true
  least_privilege:
    note: 
    applies: false
  native_wrappers:
    note: 
    applies: false
  defense_in_depth:
    note: 
    applies: false
  secure_by_default:
    note: 
    applies: false
  environment_variables:
    note: 
    applies: false
  security_by_obscurity:
    note: 
    applies: false
  frameworks_are_optional:
    note: 
    applies: false
reviews:
- 1313413010
- 1267003004
upvotes: 3
mistakes:
  answer: "The issue here comes down to coding mistakes. They neglected to zero initialize
    the video frame. \nWhen the problem was being addressed there was a lot of ambiguity
    about interaction with a \nvideo library *ffmpeg* being used at the time. The
    team did not seem to have a clear answer \non how the library would interact with
    their code for awhile. The originator assumed sending the memory \nwithout zero-initializing
    it would be safe - as they speculated that the library could handle it. \n"
  question: |
    In your opinion, after all of this research, what mistakes were made that
    led to this vulnerability? Coding mistakes? Design mistakes?
    Maintainability? Requirements? Miscommunications?

    Look at the CWE entry for this vulnerability and examine the mitigations
    they have written there. Are they doing those? Does the fix look proper?

    Use those questions to inspire your answer. Don't feel obligated to answer
    every one. Write a thoughtful entry here that those ing the software
    engineering industry would find interesting.
announced: '2015-12-05 20:59:27.720000000 -05:00'
subsystem:
  name: video
  answer: Based on the names video_frame.h
  question: |
    What subsystems was the mistake in?

    Look at the path of the source code files code that were fixed to get
    directory names. Look at comments in the code. Look at the bug reports how
    the bug report was tagged. Examples: "clipboard", "gpu", "ssl", "speech", "renderer"
discovered:
  date: Jul 28 2015
  answer: The bug was discovered with a fuzzer test.
  google: true
  contest: false
  question: |
    How was this vulnerability discovered?

    Go to the bug report and read the conversation to find out how this was
    originally found. Answer in longform below in "answer", fill in the date in
    YYYY-MM-DD, and then determine if the vulnerability was found by a Google
    employee (you can tell from their email address). If it's clear that the
    vulenrability was discovered by a contest, fill in the name there.

    The "automated" flag can be true, false, or nil.
    The "google" flag can be true, false, or nil.

    If there is no evidence as to how this vulnerability was found, then you may
    leave the entries blank except for "answer". Write down where you looked in "answer".
  automated: true
description: "The function that creates a video frame pool, the memory structure for
  video media frames, \ndoes not zero initalize the memory for a video-frame data
  structure. \nLarge unitialized sections of memory can contain sensitive information
  and cannot be relied on. \nOut-of-bounds memory access also allows for a denial
  of service attack and or read/write access. \n"
unit_tested:
  fix: true
  code: 
  answer: false
  question: |
    Were automated unit tests involved in this vulnerability?
    Was the original code unit tested, or not unit tested? Did the fix involve
    improving the automated tests?

    For the "code" answer below, look not only at the fix but the surrounding
    code near the fix and determine if and was there were unit tests involved
    for this module.

    For the "fix" answer below, check if the fix for the vulnerability involves
    adding or improving an automated test to ensure this doesn't happen again.
major_events:
  answer: 
  events:
  - date: 
    name: 
  - date: 
    name: 
  question: |
    Please record any major events you found in the history of this
    vulnerability. Was the code rewritten at some point? Was a nearby subsystem
    changed? Did the team change?

    The event doesn't need to be directly related to this vulnerability, rather,
    we want to capture what the development team was dealing with at the time.
curation_level: 0
CWE_instructions: |
  Please go to cwe.mitre.org and find the most specific, appropriate CWE entry
  that describes your vulnerability. (Tip: this may not be a good one to start
  with - spend time understanding this vulnerability before making your choice!)
bounty_instructions: |
  If you came across any indications that a bounty was paid out for this
  vulnerability, fill it out here. Or correct it if the information already here
  was wrong. Otherwise, leave it blank.
interesting_commits:
  answer: 
  commits:
  - note: 
    commit: 
  - note: 
    commit: 
  question: |
    Are there any interesting commits between your VCC(s) and fix(es)?

    Write a brief (under 100 words) description of why you think this commit was
    interesting in light of the lessons learned from this vulnerability. Any
    emerging themes?

    If there are no interesting commits, demonstrate that you completed this section by explaining what happened between the VCCs and the fix.
curated_instructions: |
  If you are manually editing this file, then you are "curating" it. Set the
  entry below to "true" as soon as you start. This will enable additional
  integrity checks on this file to make sure you fill everything out properly.
  If you are a student, we cannot accept your work as finished unless curated is
  set to true.
upvotes_instructions: |
  For the first round, ignore this upvotes number.

  For the second round of reviewing, you will be giving a certain amount of
  upvotes to each vulnerability you see. Your peers will tell you how
  interesting they think this vulnerability is, and you'll add that to the
  upvotes score on your branch.
announced_instructions: |
  Was there a date that this vulnerability was announced to the world? You can
  find this in changelogs, blogs, bug reports, or perhaps the CVE date. A good
  source for this is Chrome's Stable Release Channel
  (https://chromereleases.googleblog.com/).
  Please enter your date in YYYY-MM-DD format.
fixes_vcc_instructions: |
  Please put the commit hash in "commit" below (see my example in
  CVE-2011-3092.yml). Fixes and VCCs follow the same format.
description_instructions: "You can get an initial description from the CVE entry on
  cve.mitre.org. These\ndescriptions are a fine start, but they can be kind of jargony.\n\nRewrite
  this description in your own words. Make it interesting and easy to\nread to anyone
  with some programming experience. We can always pull up the NVD\ndescription later
  to get more technical.\n\nTry to still be specific in your description, but remove
  Chromium-specific\nstuff. Remove references to versions, specific filenames, and
  other jargon\nthat outsiders to Chromium would not understand. Technology like \"regular\nexpressions\"
  is fine, and security phrases like \"invalid write\" are fine to\nkeep too.\n   \n"

See a mistake? Is something missing from our story? We welcome contributions! All of our work is open-source and version-controlled on GitHub. You can curate using our Curation Wizard.

Use our Curation Wizard

Or go to GitHub

  • There are no articles here... yet

Timeline

Hover over an event to see its title.
Click on the event to learn more.
Filter by event type with the buttons below.

expand_less